Compact Kähler Manifolds with Nonpositive Bisectional Curvature
نویسنده
چکیده
Let (Mn, g) be a compact Kähler manifold with nonpositive bisectional curvature. We show that a finite cover is biholomorphic and isometric to a flat torus bundle over a compact Kähler manifold Nk with c1 < 0. This confirms a conjecture of Yau. As a corollary, for any compact Kähler manifold with nonpositive bisectional curvature, the Kodaira dimension is equal to the maximal rank of the Ricci tensor. We also prove a global splitting result under the assumption of certain immersed complex submanifolds.
منابع مشابه
Gradient Kähler-ricci Solitons and a Uniformization Conjecture
In this article we study the limiting behavior of the KählerRicci flow on complete non-compact Kähler manifolds. We provide sufficient conditions under which a complete non-compact gradient KählerRicci soliton is biholomorphic to C. We also discuss the uniformization conjecture by Yau [15] for complete non-compact Kähler manifolds with positive holomorphic bisectional curvature.
متن کاملOn the Steinness of a Class of Kähler Manifolds
Let (M, g) be a complete non-compact Kähler manifold with non-negative and bounded holomorphic bisectional curvature. We prove that M is holomorphically covered by a pseudoconvex domain in C which is homeomorphic to R, provided (M, g) has uniformly faster than linear average quadratic curvature decay.
متن کاملOn Complete Noncompact Kähler Manifolds with Positive Bisectional Curvature
We prove that a complete noncompact Kähler manifold Mof positive bisectional curvature satisfying suitable growth conditions is biholomorphic to a pseudoconvex domain of C and we show that the manifold is topologically R2n. In particular, when M is a Kähler surface of positive bisectional curvature satisfying certain natural geometric growth conditions, it is biholomorphic to C2.
متن کاملOn the Complex Structure of Kähler Manifolds with Nonnegative Curvature
We study the asymptotic behavior of the Kähler-Ricci flow on Kähler manifolds of nonnegative holomorphic bisectional curvature. Using these results we prove that a complete noncompact Kähler manifold with nonnegative bounded holomorphic bisectional curvature and maximal volume growth is biholomorphic to complex Euclidean space C . We also show that the volume growth condition can be removed if ...
متن کاملOn dimension reduction in the Kähler-Ricci flow
We consider dimension reduction for solutions of the Kähler-Ricci flow with nonegative bisectional curvature. When the complex dimension n = 2, we prove an optimal dimension reduction theorem for complete translating KählerRicci solitons with nonnegative bisectional curvature. We also prove a general dimension reduction theorem for complete ancient solutions of the Kähler-Ricci flow with nonneg...
متن کامل